
被害から資源へ~地域ぐるみでのゾーンディフェンスで被害0へ~

DMM Agri Innovation

DMM Agri Innovation

01. 『農業と未来を歩む』をテーマに、電気柵等資材販売 実証実験による鳥獣対策資材の適正化開発

- 02. 研究機関・地域社会と連携し、ゾーンディフェンスの 実現を目指す⇒農業のDX化(デジタルトランスフォーメーション)
- 03. 「被害」から「資源」へ。新しいジビエ流通の実現に 向け、パッケージ開発から流通支援まで実施。

アジェンダ

1:個人農家様が実践される基本的な鳥獣被害対策

2:ゾーンディフェンスについて

1:個人農家様が実践される基本的な鳥獣被害対策害

獣害対策商品は目的によって 大きく3つに分けられます。

追い払う 侵入させない 電気柵 ワイヤーメッシュ

防獣ネット

エアガン等

捕らえる

くくり罠 箱罠等

監視する 調べる

監視カメラ センサーカメラ ドローン等

当社は主力商品として 電気柵の販売を行っております。

メリット……設置がカンタン デメリット…定期的なメンテナンスが必要

ワイヤーメッシュ 丈夫なメッシュのフェンスが

農地への侵入を防ぐ メリット……確実な効果 デメリット…製品・設置コストが高め

防獣・防鳥ネット

経済的で丈夫なネットが作物や 農地への被害・侵入を防ぐ

メリット……経済的なコスト デメリット…侵入を防ぎきれない場合も

エアガン

農地へ侵入する害獣を狙って 安全に直接威嚇、排除する

メリット……経済的なコスト デメリット…侵入を防ぎきれない場合も

捕らえる

罠

丈夫な構造が確実に害獣を捕獲 用途に合わせたサイズも各種

メリット……確実な効果 デメリット…皈体の重量と高コスト

くくり罠

一度設置すれば捕獲までの 管理が容易

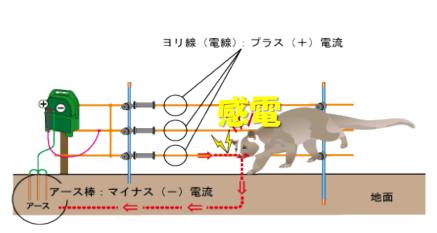
メリット……確実な効果 デメリット…捕獲後の処理、コスト

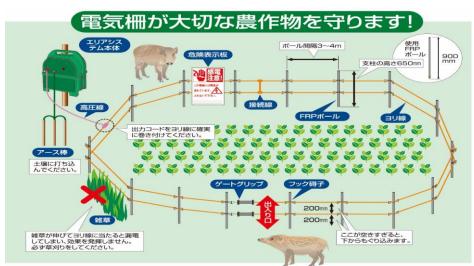
監視する

センサーカメラ

人間や野生動物の動きを センサーが感知し、自動 撮影する屋外型カメラ。 監視から動物の生態観察 まで活用可能

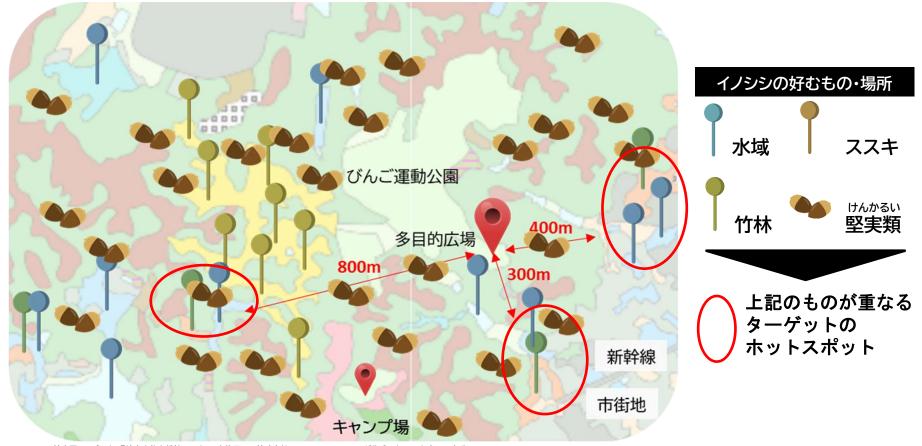
メリット……確実な効果 デメリット…定期的なメンテナンス

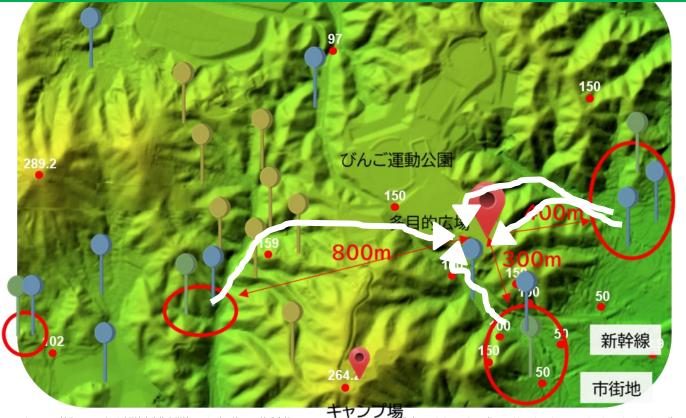

ドローンカメラ


静止の空撮から、移動の 撮影まで、撮影しにくい 場所も無理なく監視可能 な飛行型カメラ

デメリット…長時間の運用は難しい

ワイヤーメッシュ等の物理柵と異なり、電気柵は直接的な痛みを伴います。


一度触れると野生動物に<mark>恐怖感を与える学習効果</mark>があるので、『**心理柵**』とも呼ばれます。学習によって害獣と生活圏を分けることで、共生に近づけます。


2:地域で取り組むゾーンディフェンス

①状況把握|地図から/ホットスポット予測

1/25,000植生図GISデータ(環境省生物多様性センター)を使用し、株式会社DMM Agri Innovationが作成・加工したものである。(https://gis.biodic.go.jp/webgis/index.html) 電子国土基本図(オルソ画像)簡易空中写真(環境省生物多様性センター)を使用し、株式会社DMM Agri Innovationが作成・加工したものである。(https://gis.biodic.go.jp/webgis/index.html) 1/25,000植生図GISデータ(環境省生物多様性センター)を使用し、株式会社DMM Agri Innovationが作成・加工したものである。(https://gis.biodic.go.jp/webgis/index.html)

①状況把握 | 地図から/ホットスポット予測(高低差を加味)

1/25,000植生図GISデータ(環境省生物多様性センター)を使用し、株式会社DMM Agri Innovationが作成・加工したものである。(http://gis.biodic.go.jp/webgis/index.html)

①状況把握|トレイルカメラで撮影

02-19-2021

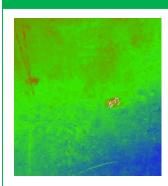
18:32:53

①状況把握|トレイルカメラで撮影

①状況把握|ドローン空撮

DMM.com

①植生調査・マップ作成


対策が必要な周辺地域を撮影し、オルソ画像を作成。

一枚の写真として植生や状況の変化を見ること が可能です。

植生を調べることで鳥獣の好みから、 どのあたりの出没が予想されるかなども分析す る素材となります。

(分析は含まれておりません)

②赤外線カメラ撮影

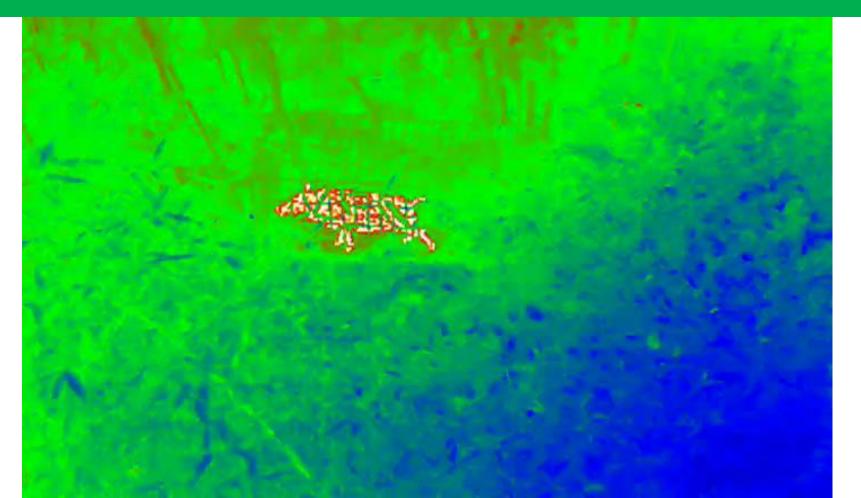
野山にて可視画像では捕捉しにくい 鳥獣を高機能赤外線カメラを活用することで捕 捉確率を引き上げ、捉えます。出没場所の特定や、狩猟の際の捕捉手段、生息調査などに活用ができます。夜間でも対応が可能で効 果も上がります。

③空撮による捕捉

特に加工を必要としない静止画や動画を撮影します。

確認したい場所の特定や、 立ち入りにくい場所の確認、

空撮による対象鳥獣の捕捉にも活用できます。 赤外線より捕捉確率は下がるため、


鳥獣の存在が高い場所に安価に対応したい時に 有効です。

4動体検出

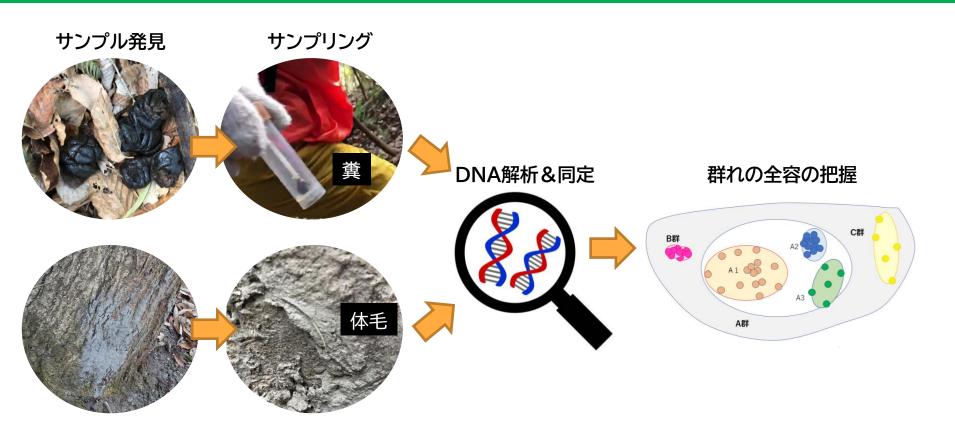

画像分析技術を活用し、 自動で動いている物を検出します。 精度を高めるほど特定しやすくなりますが 高額になります。 分析する元の素材も必要となるため 決められた構図での空撮なども必要になります。 目的を事前に明確にしておいてください。

①状況把握|ドローン空撮(赤外線カメラ撮影)

①状況把握|ドローン空撮(赤外線カメラ撮影)

(3)細かい植生

①状況把握|フィールド調査(痕跡調査)

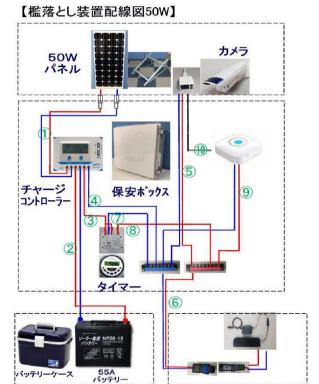

DMM.com

①状況把握|DNA解析~群れの全容の把握~

①状況把握|マッピングによる可視化

DMM.com

電気柵は一度触れると動物に恐怖感を与える学習効果があり、『心理柵』とも呼ばれています。また忌避剤やグレーチングにより、野生動物と生活圏を分けるゾーンディフェンスをおこないます。これにより、人間と野生動物の共生を図ります。


③捕獲 ICT捕獲システム

ICT(情報通信技術)を活用した捕獲

- 1. 箱罠の見回り・監視などの作業負荷を軽減
- 2. 生息頭数の削減のために成獣を効果的に捕獲

KAUSMEDIA

③捕獲|広島県北広島|農事組合法人せんごくの里

タヌキが入った時は檻を落とさない

イノシシが入った場合檻を落とす

③捕獲|愛媛県今治市伯方島

捕獲⇒加工処理場へ

大学・研究機関の検査

まとめ